Биовыщелачивание медно-цинкового мышьяк-содержащего концентрата

^{2,3}Елкина Ю.А., ^{1,2}Нечаева А.В., ²Меламуд В.С., ^{2,3}*Булаев А.Г.

¹Российский государственный аграрный университет - МСХА им. К.А. Тимирязева, Москва ²Институт микробиологии им. С.Н. Виноградского, ФИЦ Биотехнологии РАН, Москва ³Московский государственный университет имени М.В. Ломоносова, Биологический факультет, г. Москва; *bulaev.inmi@yandex.ru

Цветные металлы из сульфидных руд извлекаются, главным образом, с помощью пирометаллургических технологий, но для пирометаллургии является проблемой переработка мышьяк-содержащих руд и труднообогатимых полиметаллических руд, из которых невозможно получить кондиционные концентраты из-за взаимного прорастания сульфидных минералов. Биогидрометаллургические технологии широко применяются для переработки мышьяк-содержащих золотосодержащих концентратов, а также для извлечения цветных металлов из некондиционных концентратов, в частности, мышьяк-содержащих.

Целью данной работы являлось проведение процесса биовыщелачивания медноцинкового мышьяк-содержащего концентрата при различных температурах и в присутствии различных дополнительных источников углерода (CO₂ и меласса).

Основными сульфидными минералами концентрата являлись пирит, халькопирит, теннантит и сфалерит. Концентрат содержал 24,40% Fe, 6,20% Cu, 7,30% Zn и 1,70% As. Процесс биоокисления концентрата проводили в периодическом режиме в лабораторных реакторах объемом 2,5 л при следующих параметрах: аэрация — 5 л/мин, скорости вращения турбинной мешалки — 500 об/мин. Температуры составляли 40, 45, 50, 55 и 60°С. Плотность пульпы (Т: Ж) составляла 1: 10 (100 г концентрата на 1000 мл жидкой среды). Время пребывания составляло 40 сут.

В качестве инокулята использовали микробную культуру, сформировавшуюся в процессе биоокисления того же сульфидного концентрата при 40°С в проточном режиме, в которой преобладали ацидофильные бактерии Leptospirillum ferriphilum, Sulfobacillus spp., а также археи Ferroplasma acidiphilum и Acidiplasma sp. Инокулят вносили в реакторы в таком объеме, чтобы начальная численность клеток микроорганизмов в жидкой фазе составляла 1×10⁸ кл/мл. В пульпу первого реактора осуществляли подачу СО₂ (примерно 0,01 л/мин). В пульпу второго вносили 0,02% мелассы (в начале эксперимента, на 10, 20 и 30 сутки). В контрольный реактор не вносили каких-либо дополнительных источников углерода. При проведении процессов биоокисления определяли параметры жидкой фазы пульпы биоокисления, которые позволяют оценить активность биоокисления (рН, Еh, концентрацию ионов Fe³⁺ и Fe²⁺, а также мышьяка). При необходимости рН пульпы регулировали путем добавления серной кислоты или карбоната кальция. Численность клеток микроорганизмов определяли прямым подсчетом с помощью фазово-контрастного микроскопа Carl Zeis Jena (×1600).

Параметры жидкой фазы реакторов представлены в Таблице 1, степени извлечения цветных металлов в Таблице 2.

Табл. 1 – Параметры жидкой фазы пульпы в конце эксперимента (на 40 сутки)

Температура	Источник углерода	pН	Eh	Fe ³⁺ , г/л	Fe ²⁺ , г/л	As, r/π	Cu ²⁺ , г/л	Zn ²⁺ , г/л
40°C	CO_2	1,08	775	16,3	0,04	0,42	1,21	5,65
	Меласса	1,04	777	15,5	0,00	0,41	1,25	5,83
	Контроль	1,05	773	15,2	0,00	0,42	1,16	5,80
45°C	CO_2	1,04	802	18,7	0,03	0,46	1,52	5,74

	Меласса	1,08	804	15,8	0,00	0,44	1,62	5,76
	Контроль	1,05	792	15,8	0,06	0,43	1,43	5,99
50°C	CO_2	1,04	805	17,6	0,06	0,48	1,58	5,19
	Меласса	1,02	800	14,6	0,14	0,44	1,67	4,94
	Контроль	0,97	802	16,1	0,03	0,46	1,48	4,97
55°C	CO_2	1,26	832	9,59	0,35	0,35	1,38	5,14
	Меласса	1,37	804	4,97	1,54	0,24	1,25	4,89
	Контроль	1,91	760	1,12	3,22	0,02	1,35	5,15
60°C	CO_2	2,31	584	0,28	2,14	0,01	1,40	4,93
	Меласса	2,54	562	0,14	0,95	0,01	0,69	3,42
	Контроль	2,52	566	0,08	0,63	0,01	0,62	3,16

Табл. 2 – Степени извлечения меди и цинка в раствор, % (на 40 сутки)

Температура	Источник углерода Cu		Zn	
	CO ₂	16,6	91,1	
40°C	Меласса	20,2	94,0	
	Контроль	16,6 20,2 18,7 24,5 26,1 23,1 25,5 26,9 23,9 22,3 20,2 21,8 22,6 11,1	93,5	
	CO_2	24,5	92,6	
45°C	Меласса	26,1	92,9	
	Контроль	16,6 20,2 18,7 24,5 26,1 23,1 25,5 26,9 23,9 22,3 20,2 21,8 22,6	96,6	
	CO_2	25,5	83,7	
50°C	Меласса	26,9	79,7	
	Контроль	16,6 20,2 18,7 24,5 26,1 23,1 25,5 26,9 23,9 22,3 20,2 21,8 22,6 11,1	80,2	
	CO_2	22,3	82,9	
55°C	Меласса	20,2	78,9	
	Контроль	16,6 20,2 18,7 24,5 26,1 23,1 25,5 26,9 23,9 22,3 20,2 21,8 22,6 11,1	83,1	
	$\overrightarrow{CO_2}$ 22,6	22,6	79,4	
60°C	Меласса	11,1	55,2	
	Контроль	10,0	51,0	

Как видно из представленных данных, степени извлечения металлов не различались значительно в реакторах с разными источниками углерода. При этом с повышением температуры степени извлечения металлов снижались, вероятно, из-за уменьшения активности микроорганизмов. При этом, несмотря на то, что степени извлечения меди и цинка при 60°С оставались высокими, концентрация мышьяка снижалась, что указывает на то, что его выщелачивание в большей степени определялось активностью микроорганизмов, чем других элементов.

Исследование было выполнено при поддержке Гранта Президента Российской Федерации для государственной поддержки молодых российских ученых - кандидатов наук № МК-6639.2018.8.